

GLUCOSE/FRUCTOSE (GLUC/FRU)

UV METHOD MANUAL RX ALTONA FOOD AND WINE

INTENDED USE

For the quantitative in vitro determination of Glucose/Fructose in wine, fruit juice and honey.

This product is suitable for manual use and on the RX altona analyser. Applications for a variety of additional analysers are available from www.randoxfooddiagnostics.com.

FOR THE ANALYSIS OF FOOD AND WINE. Not for use in diagnostic procedures.

Cat. No.

GF 2635	RI.	Buffer	I x 100 ml
	R2.	Enzyme Reagent	l x l.l ml
	R3.	PGI	I x 0.6 ml
	CAL	Glucose Standard	1×5.5 ml

UV METHOD(1-4)

Glucose is measured enzymatically utilising both hexokinase and glucose-6-phosphate dehydrogenase.

The total sugar content (glucose + fructose) is determined by converting the fructose - 6- phosphate

(F-6-P) to glucose-6-phosphate (G-6-P) by phosphoglucose isomerase (PGI). The G-6-P is then converted to gluconate-6-phosphate and the NADH formed is stoichiometric with the amount of total sugars.

Fructose content = Total sugar - glucose content.

REACTION PRINCIPLE

D - Glucose + ATP
$$\xrightarrow{\text{hexokinase}}$$
 G-6-P + ADP

D -Fructose + ATP $\xrightarrow{\text{hexokinase}}$ F-6-P + ADP

F-6-P $\xrightarrow{\text{G-6-PDH}}$ G-6-P

G-6-P+ NAD+ $\xrightarrow{\text{D-gluconate-6-Phosphate}}$ D-gluconate + NADH + H+

SAMPLE WINE

Turbid samples should be filtered prior to assay. Strongly coloured samples should be decolourised with 0.2 g polyvinylpolypyrrolidone (PVPP) to approximately 10 ml of juice or wine. Shake vigorously for 5 minutes and filter. The clear filtrate can then be used in the assay undiluted. Carbonic acid should be removed by filtering or stirring with a glass rod for 30 seconds.

HONEY

Transfer 5g of viscous or crystalline honey into a beaker and heat for 5 minutes at +60°C, stir occasionally throughout. Allow to cool; then accurately weigh out 1g of liquid honey and dissolve in small amount of dlH2O, transfer into a 100ml volumetric flask and dilute to the mark and mix. Honeys greater than 75g/100g (7.5g/l) should be further diluted 1 in 10 with dlH2O.

REAGENT COMPOSITION

Cont	ents	Concentrations in the Test
RI.	Buffer	
	Pipes	100 mmol/l, pH 7.6
	ATP	4 mmol/l
	NAD+	3 mmol/l
	Magnesium ions	15 mmol/l
R2.	Enzyme Reagent	
	Hexokinase	≥ 0.5 U/ml
	G-6-PDH	≥ 1.5 U/ml
R3.	PGI	
	Phosphoglucose Isomerase	≥ 6.8 U/ml
CAL	. Standard	
	Glucose	See lot specific insert

SAFETY PRECAUTIONS AND WARNINGS

For *in vitro* use only. Do not pipette by mouth. Exercise the normal precautions required for handling laboratory reagents.

Solution R1 contains Sodium Azide. Avoid ingestion or contact with skin or mucous membranes. In case of skin contact, flush affected area with copious amounts of water. In case of contact with eyes or if ingested, seek immediate medical attention.

Sodium Azide reacts with lead and copper plumbing, to form potentially explosive azides. When disposing of such reagents, flush with large volumes of water to prevent azide build up. Exposed metal surfaces should be cleaned with 10% sodium hydroxide.

Health and Safety data sheets are available on request.

Please dispose of all biological and chemical materials according to local guidelines.

The reagents must be used only for the purpose intended by suitably qualified laboratory personnel, under appropriate laboratory conditions.

MATERIALS PROVIDED

Buffer Enzyme Reagent PGI Glucose Standard

MANUAL/RX ALTONA GF2635

STABILITY AND PREPARATION OF REAGENTS FOR RX ALTONA

RI. Buffer

Contents stable up to expiry when stored at +2 to +8°C.

CAL. Glucose Standard

The glucose standard is ready to use.

Preparation of reagents for Glucose/Fructose

Prepare enough glucose R2 for the preparation of total sugars:

R2. Glucose Reagent (GF-G)

Add **795** μ I of enzyme reagent R2 to 15 ml of buffer R1. The working reagent is stable for 3 months at +2 to +8°C.

R2. Total sugars Reagent (GLFR)

Add **285** μ I of PGI R3 to **7.5** mI of Glucose reagent R2 (GF-G). Stable for 3 months at +2 to +8°C. <u>Gently</u> swirl/invert PGI R3 reagent before pipetting.

RX ALTONA PROCEDURE

GLUCOSE

Select GLFR GLU in the Test Screen. Then select Run Calibration or Run Sample and carry out a water blank as instructed.

Pipette into a co	uvette:		
	S0	SI	Sample
R1 Buffer	540 µl	540 µl	540 µl
dIH2O	5 µl	-	-
Standard	-	5 μΙ	-
Sample	-	-	5 μΙ

Mix, incubate for I minute at +37°C.

Insert the cuvette into the RX **altona** flowcell holder when prompted for Sample Blank and press Read. Then add

R2 (GF-G)	90 µl	90 µl	90 µl
	•	•	

Mix, incubate for a further 5 minutes at +37°C. Insert the cuvette into the RX **altona** flowcell holder when prompted for Sample and press Read.

TOTAL SUGARS

Select GLFR Total in the Test Screen. Then select Run Calibration or Run Sample and carry out a water blank as instructed.

Pipette into a cuvette:				
	SO	SI	Sample	
RI Buffer	540 µl	540 µl	540 µl	
dIH2O	5 µl	-	-	
Standard	-	5 μΙ	-	
Sample	-	-	5 μΙ	

Mix, incubate for I minute at +37°C.

Insert the cuvette into the RX **altona** flowcell holder when prompted for Sample Blank and press Read. Then add

R2 (GLFR)	90 µl	90 µl	90 µl

Mix, incubate for 15 minutes at +37°C.

Insert the cuvette into the RX altona flowcell holder when prompted for Sample and press Read.

CALIBRATION FOR RX ALTONA

Calibration is recommended with change of reagent lot, or as indicated by QC procedures. Use CAL Standard provided in the kit.

CALCULATION

Fructose concentration is calculated as follows:

Fructose = Total Sugars content - glucose content of samples

MANUAL PROCEDURE

STABILITY AND PREPARATION OF REAGENTS FOR MANUAL USE

Buffer Solution, Enzyme reagent and Standard are ready for use as supplied. PGI should be inverted before use. All components are stable to the expiry date when stored at +2 to $+8^{\circ}$ C.

MANUAL/RX ALTONA GF2635

INSTRUCTIONS FOR USE

If measuring samples containing sugars in the range 0.6 - 4.0 g/l, follow procedure A. If measuring samples less than 0.6 g/l sugars, then follow procedure B and dilute the standard I in 10. If using 3 or 4 ml cuvettes, follow macro procedures. If using 1 ml cuvettes, follow semi-micro procedure.

(A)

Samples 0.6 g/l - 4 g/l

Wavelength: 340 nm (Hg 334 nm or Hg 365 nm)

Cuvette: I cm path length

Temperature: +20 to+25°C

Measurements: against water (increasing absorbance)

Pipette into I ml Cuvettes

	Blank	Standard	Sample
Buffer R I	1000 µl	Ι000 μΙ	1000 µl
Sample	-	-	Ι0 μΙ
Standard (optional)	-	Ι0 μΙ	_
Distilled Water	10 μΙ	-	-

Mix and measure absorbance A

Enzyme Reagent R2	Ι0 μΙ	Ι0 μΙ	Ι0 μΙ

Mix well and incubate for 10 to 15 minutes at +20 to +25 $^{\circ}$ C. Measure absorbance A_2

	_		
PGI R3	5 µl	5 µl	5 µl

Mix well and incubate for 10 to 15 minutes at +20 to +25°C. Measure absorbance A₃.

CALCULATION USING A FACTOR

A. Glucose $(A_2 - A_1)_{sample} - (A_2 - A_1)_{Blank} = \Delta A_{glucose}$

B. Fructose (A₃ - A₂) sample - (A₃ - A₂)Blank = Δ Afructose.

Wavelength	Conc Glucose (g/l)	Conc Fructose (g/l)
------------	--------------------	---------------------

Hg 365 nm	$5.250 \times \Delta A_{glucose}$	$5.276 \times \Delta A_{fructose}$
Hg 334 nm	$2.974 \times \Delta A_{glucose}$	$2.99 \times \Delta A_{fructose}$
Hg 340 nm	2.917 x ΔA _{glucose}	$2.93 \times \Delta A_{fructose}$

CALCULATION USING A STANDARD (Glucose)

		ΔA_{sample} (glucose)	
Concentration of glucose = standard	Х		(g/l)
Conc.		$\Delta A_{\text{standard (glucose)}}$	

CALCULATION USING A STANDARD (Fructose)

Concentration of Fructose = standard \times conc. $\Delta A_{\text{sample (fructose)}} (g/I)$

(B)

Samples less than 0.6 g/l

Wavelength: 340 nm (Hg 334 nm or Hg 365 nm)
Cuvette: I cm path length
Temperature: +20 to+25°C
Measurements: against water (increasing absorbance)

Pipette into I ml Cuvettes

	Blank	Standard	Sample				
Buffer Solution R I	1000 μΙ	1000 μΙ	1000 μΙ				
Sample	-	-	50 μΙ				
Standard (diluted I + '	9) -	50 μl	-				
Distilled Water	50 μΙ	-	-				
Mix and measure abso	rbance Aı						
Enzyme Reagent R2	10 μΙ	10 μΙ	ΙΟ μΙ				
Mix well and incubate $10-15$ minutes at $+20$ to $+25^{\circ}$ C. Measure absorbance A_2							
PGI R3	5 μΙ	5 μΙ	5 μΙ				

Mix well and incubate for 10 - 15 minutes at +20 to +25°C. Measure absorbance A₃.

CALCULATION USING A FACTOR

A. Glucose $(A_2 - A_1)_{\text{sample}} - (A_2 - A_1)_{\text{Blank}} = \Delta A_{\text{glucose}}$.

B. Fructose (A₃ - A₂) sample - (A₃ - A₂)Blank = Δ Afructose.

Wavelength	Conc Glucose (g/l)	Conc Fructose (g/l)
Hg 365 nm	I.091 x ΔA _{glucose}	I.096 × ΔA _{fructose}
Hg 334 nm	$0.618 \times \Delta A_{glucose}$	$0.621 \times \Delta A_{\text{fructose}}$
Hg 340 nm	0.606 x AAglucose	$0.609 \times \Delta A_{\text{fructose}}$

CALCULATION USING A STANDARD (Glucose)

Concentration of glucose = standard $\begin{array}{c} & \Delta A_{\text{sample (glucose)}} \\ \text{conc./10} & \Delta A_{\text{standard (glucose)}} \end{array}$

CALCULATION USING A STANDARD (Fructose)

Concentration of fructose = standard conc./10 $\times \frac{\Delta A_{\text{sample (fructose)}}}{\Delta A_{\text{standard (glucose)}}}$

SPECIFIC PERFORMANCE CHARACTERISTICS

The following performance characteristics were obtained using an RX **altona** analyser in cuvette mode at +37°C.

WINE

LINEARITY

The glucose, total sugars & fructose is linear to 7.5 g/l.

SENSITIVITY

The minimum detectable concentration of glucose, total sugars & fructose with an acceptable level of precision was determined as 0.3 g/l.

GLUCOSE PRECISION

Intra assay precision			
	Level I	Level 2	Level 3
Mean (g/l)	0.859	2.189	4.174
SD	0.031	0.065	0.148
CV (%)	3.58	2.99	3.53
n	20	20	20
1 A			
Inter-Assay precision	Level I	Level 2	Level 3
Mana (=/)	0.817	2.116	
Mean (g/l) SD		0.113	4.000 0.260
	0.028 3.45	5.34	6.5 I
CV (%)	3.45 20	5.3 4 20	20
n	20	20	20
TOTAL SUGARS			
PRECISION			
Intra assay precision			
, .	Level I	Level 2	Level 3
Mean (g/l)	5.109	5.416	6.670
SD	0.130	0.137	0.117
CV (%)	2.54	2.53	1.75
n	20	20	20
Inter-Assay precision			
	Level I	Level 2	Level 3
Mean (g/l)	5.272	5.546	7.023
SD			
	0.222	0.273	0.213
CV (%)	0.222 4.22 20	0.273 4.92 20	0.213 3.03 20

HONEY

LINEARITY

The glucose, total sugars & fructose is linear to 7.5 g/l (75 g/l 00 g).

SENSITIVITY

The minimum detectable concentration of glucose, total sugars & fructose with an acceptable level of precision was determined as 0.3 g/l (3g/100g).

GLUCOSE PRECISION			
Intra assay precision			
	Level I	Level 2	Level 3
Mean (g/100g)	20.265	26.060	29.305
SD	0.549	0.624	0.602
CV (%)	2.71	2.39	2.05
n	20	20	20
Inter-Assay precision			
	Level I	Level 2	Level 3
Mean (g/100g)	20.015	25.760	28.710
SD	1.206	0.657	0.636
CV (%)	6.03	2.55	2.21
n	20	20	20
TOTAL SUGARS			
PRECISION			
Intra assay precision			
	Level I	Level 2	Level 3
	Level I 45.300	Level 2 59.420	Level 3 65.099
Intra assay precision			
Intra assay precision Mean (g/100g) SD	45.300	59.420	65.099
Intra assay precision Mean (g/100g)	45.300 0.868	59.420 1.000	65.099 1.345
Intra assay precision Mean (g/100g) SD CV (%)	45.300 0.868 1.92	59.420 1.000 1.68	65.099 1.345 2.07
Intra assay precision Mean (g/100g) SD CV (%)	45.300 0.868 1.92	59.420 1.000 1.68	65.099 1.345 2.07
Intra assay precision Mean (g/100g) SD CV (%) n Inter-Assay precision	45.300 0.868 1.92 20	59.420 1.000 1.68 20	65.099 1.345 2.07 20
Intra assay precision Mean (g/100g) SD CV (%)	45.300 0.868 1.92 20	59.420 1.000 1.68 20	65.099 1.345 2.07 20

REFERENCES

n

 Stein, M.W., Methods of Enzymatic Analysis (Bergmeyer, H.K., ed.) Academic Prep, New York, 1974., 1196-1201.

20

20

20

- Schmidt, F.H., (1961) Die enzymatische Bestimmung von Glucose und Fructose nebeneinander, Klin. Wschr 39: 1244-1247
- Bergmeyer H.U., Bernt e., Schmidt, F. & Stork, H. (1974) in Methoden der Enzymatischen Analyse (Bergmeyer, H. U., Hrsg.) Bd. 2, S. 1241-1246: Verlag Chemie, Weinheim and (1974) in Methods of Enzymatic Analysis (Bergmeyer, H.U., ed.) 2nd ed., vol. 3, pp. 1196-1201, Verlag Chemie, Weinheim, Academic Press, Inc. New York and London.
- Bernt, E & Bergmeyer, H.U. (1974) in Methoden der Enzymatischen Analyse (Bergmeyer, H.U., Hrsg.) Bd. 2, S. 1349-1352: Verlag Chemie, Weinheim, and (1974). in Methods of Enzymatic Analysis (Bergmeyer, H.U., ed.) 2nd., vol 3, pp. 1304-1307, Verlag Chemie, Weinheim, Academic Press, Inc New York and London.

Revised 27 Sep 16 ml Rev. 007