Sulfur Dioxide Additions

Using Potassium Metabisulfite

How much sulfur dioxide is added to wine depends on the pH. For example: A low pH wine needs less SO_2 than a high pH wine because a larger percentage of the SO_2 is available as molecular form of SO_2 to fight oxidation and microbial activity. The first table indicates how much free SO_2 (in parts per million) a wine should have. Remember that the sensory threshold for sulfur dioxide is around 50 ppm. This is another reason why a lower pH is preferred for wine.

To determine how much SO_2 should be added to a specific wine, answer the questions below. Write these numbers on a separate sheet of paper or in your records.

pН	Desired Free	Based on the wine's pH, how much free SO_2 is needed to		
1	SO_2 (ppm)	obtain 0.8 mg/L molecular SO ₂ ? This is your target amount.		
2.9	11	_	Α	_ ppm
3.0	13			
3.1	16	Based on the analysis of free SO_2 , how much free SO_2		
3.2	21	is present in the wine?	B	ppm
3.3	26		C	
3.4	32	A - B = C, C being the amount of SO ₂ needed.	C	_ ppm
3.5	40		n	τ•4
3.6	50	$D =$ the amount of while (Liters) that needs SO_2 .	<u>D</u>	_ Liter
3.7	63	of college by 2,785		
3.8	79	of gallons by 5.785.		
3.9	99	Is not assign metabisulfite being used for SO2 additions?	1 74	
4.0	125	If so, a factor of 1.75 is needed in the calculation	1./、	<u>,</u>
Potassium metabisulfite contains 57% sulfur dioxide $(100/57 = 1.75)$				

Divide by 1000 to determine the amount in grams <u>1000</u> of Potassium metabisulfite to add.

To calculate how much metabisulfite you need to add, first subtract the SO2 already present in your wine from your target (A-B). The difference is C, multiply by the number of liters you want to treat (D). If you measure your wine in gallons, multiply the C term by the number of gallons and then multiply by 3.785. If you are using potassium metabisulfite multiply by 1.75 (potassium metabisulfite is only 57% sulfur dioxide). Next, divide by 1000 to get the number of grams of sodium metabisulfite you need to add. This calculation can be written as an equation:

A - B = C

C * D * 1.75 / 1000 = grams potassium metabisulfite to be added